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Estimating Effective Connectivity by Recurrent
Generative Adversarial Networks

Junzhong Ji , Jinduo Liu , Lu Han, and Feipeng Wang

Abstract— Estimating effective connectivity from func-
tional magnetic resonance imaging (fMRI) time series data
has become a very hot topic in neuroinformatics and brain
informatics. However, it is hard for the current methods to
accurately estimate the effective connectivity due to the
high noise and small sample size of fMRI data. In this paper,
we propose a novel framework for estimating effective
connectivity based on recurrent generative adversarial net-
works, called EC-RGAN. The proposed framework employs
the generator that consists of a set of effective connectivity
generators based on recurrent neural networks to generate
the fMRI time series of each brain region, and uses the
discriminator to distinguish between the joint distributions
of the real and generated fMRI time series. When the model
is well-trained and generated fMRI data is similar to real
fMRI data, EC-RGAN outputs the effective connectivity by
means of the causal parameters of the effective connectivity
generators. Experimental results on both simulated and
real-world fMRI time series data demonstrate the efficacy
of our proposed framework.

Index Terms— Effective connectivity, generative adver-
sarial networks, recurrent neural networks, fMRI time series.

I. INTRODUCTION

IN RECENT years, there has been an increasing interest in
brain network analysis. One of the main end goals of brain

network analysis is to determine the set of causal relations that
describe the effective connectivity (EC) within a set of brain
regions from neuroimaging data, e.g., functional magnetic
resonance imaging (fMRI) data. EC characterizes the neural
influence between two brain regions [1], and its impairment
is associated with some brain diseases, e.g., Alzheimer’s
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disease (AD) [2], [3], Parkinson’s disease (PD) [4], [5], and
Schizophrenia [6].

With the continuous development in the field of machine
learning theory, lots of computational methods have been
developed to estimate the causal relations between variables
[7]–[10]. In nature, estimating effective connectivity can be
represented as a problem of learning the causal relationships
between brain regions from fMRI data [11], [12]. More
precisely, a brain effective connectivity network can be rep-
resented by a causal graph (directed graph) where nodes
denote brain regions, and the directed arcs denote effective
connectivity between brain regions [13].

In the last decade, more and more methods have been
widely used to estimate the effective connectivity involved
in human brain [8]–[28]. In general, these methods can be
categorized into two types, i.e., the model-driven method and
the data-driven method. The model-driven approaches include
the dynamic causal model (DCM) [14] and the structural
equation model (SEM) [15], [16], which have been applied
extensively for estimating effective connectivity. However, this
kind of method requires prior assumptions on the models
and is commonly used to construct relatively small-scale
networks [11].

Data-driven methods include Bayesian network (BN) meth-
ods [17]–[20], Granger causality (GC) methods [21], [22],
and Linear non-Gaussian acyclic model (LiNGAM) methods
[23], [24], which can directly estimate effective connectivity
from data without any prior knowledge. BN methods search
for effective connectivity under the assumption that the true
effective connectivity network forms a directed acyclic graph
(DAG), which cannot model cyclic or bidirectional connec-
tions of the effective connectivity networks. Granger causality
(GC) methods infer effective connectivity in fMRI time series
by the multiple regression of time-indexed variables on lagged
values of variables and require the time series to be wide-
sense stationary and have a zero mean. LiNGAM uses the
assumption of non-normality to determine the unique set of
directed paths that best describe the given subject’s data
set. However, LiNGAM requires a large number of data
points, so it performs poorly when the fMRI data sample is
small. Current studies show that data-driven methods are fairly
efficient at determining the presence of an association between
variables, but less effective at orienting the association into a
causal relation. In summary, cyclic or bidirectional structure,
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high noise, and small samples are main factors that affect the
performance of this kind of methods.

In 2020, Liu et al. presented a generative adversarial net-
works model [27] to infer the effective connectivity from
fMRI data (EC-GAN) [28]. The EC-GAN employs effective
connectivity generators to generate the fMRI time series of
each brain region, and employs a discriminator to measures
the difference between generated fMRI data and real fMRI
data. The experimental results show that EC-GAN performs
well under bidirectional structure and high noise. However,
EC-GAN only considers the distribution properties of fMRI
data, and ignores the temporal information. Previous studies
have shown that temporal information is very important for
fMRI data analysis. Therefore, exploring novel models that
incorporate the temporal information with EC-GAN to esti-
mate effective connectivity from fMRI time series data may
further improve the accuracy of the model.

In this paper, we further extend our previous work [28] to
estimate effective connectivity via recurrent neural networks
(RNN) [29] and generative adversarial networks (GAN), called
EC-RGAN. The new method employs the RNN to capture
the temporal information from the fMRI time series, which
improves the authenticity of the generated data. When the gen-
erated fMRI data is similar to real fMRI data, then EC-RGAN
can get effective connectivity from the causal parameters of
the effective connectivity generators. The experimental results
on both simulated fMRI data and real-world fMRI data show
that EC-RGAN is more effective for estimating effective
connectivity than our previous model and other state-of-the-art
methods.

In a nutshell, the main contributions of this paper, compared
with our preliminary model [28], are as follows:

• To capture the temporal information from fMRI time
series, the proposed model applies RNN in the effective
connectivity analysis of fMRI data.

• To accurately estimate the effective connectivity from the
high noise and small sample size fMRI data, the proposed
model employs the RNN and SEM as the effective
connectivity generators.

• Systematic experiments show that EC-RGAN achieves
better performance compared with other state-of-the-art
methods and our preliminary model EC-GAN.

II. METHODOLOGY

In this section, we put forward our novel model, i.e.,
EC-RGAN to estimate effective connectivity from fMRI time
series data. We first show the notation and problem formula-
tion, and then give an overview of the proposed EC-RGAN,
last describe the details of the main components.

A. Notation and Problem Formulation

In this paper, we employ capital letter Xi to indicate a
variable (brain region), and i is the label of Xi . The bold letter
Xi represents the time series of Xi , and X denotes a collection
of fMRI time series with N brain regions and T length,
where X = (X1, X2, . . . , XN ) ∈ R

N×T . �(Xi ) represents
the parent nodes of variable Xi . Xi �|� X j and Xi |� X j indicate

dependence and independence between the two corresponding
variables Xi and X j , respectively.

Next, we describe the problem setting considered in this
paper. Let G represent a directed graph, D represent the fMRI
time series data, and P represent the distribution of the fMRI
data. Then, a brain effective connectivity network can be
expressed as a directed graph G =< V, E >, where V is
a set of nodes with each node Xi ∈ V indicating a brain
region or region of interest (ROI); and E is a set of arcs with
each arc Xi → X j ∈ E representing the effective connectivity.

B. EC-RGAN Architecture

The EC-RGAN is made up of a generator (G) and a
discriminator (D). The generator takes noise variable and real
fMRI time series data as input, and generates the samples
which are similar to the realistic fMRI time series data. The
discriminator takes the real fMRI time series data and samples
generated by the generator as inputs and tries to find a mapping
that tells us the input data’s probability of being real. The
structure of the proposed EC-RGAN is shown in Fig. 1.

From Fig.1 we can find that EC-RGAN takes the fMRI time
series as input and adopts a generator to generate samples.
In detail, the generator is designed based on the RNN and
SEM, where RNN is used to capture the temporal information
and SEM is employed to measure the causal relations between
brain regions. If the samples generated by the generator are
very similar to the real input data, then we can get the effective
connectivity via the causal parameters from the part of SEM.
The network structure of the discriminator is a decoder.
In other words, the discriminator is also made up of one-layer
RNN and a fully connected layer (without SEM model). The
task of the discriminator is to distinguish between generated
samples and real samples. The output of the discriminator is
a probability that indicates the degree of authenticity.

C. Effective Connectivity Generators

To estimate effective connectivity and learn the statistical
and temporal information of the original fMRI time series
data, we develop a set of effective connectivity generators as
a generator based on the RNN and SEM.

Given a fMRI time series with N brain regions Xi (i =
1, . . . , N) and T length, the input data D can be represented
as:

D = (X1, X2, . . . , XN )� ∈ R
T ×N . (1)

For the data D, we can estimate the effective connectivity
by SEM model in the following way:

Xi =
∑

X j ∈�(Xi )

FX j ,Xi (X j ) + εi , f or i = 1, . . . , N, (2)

where �(Xi ) denotes the set of parent nodes of brain region
Xi , FX j ,Xi is the strength of effective connectivity (X j → Xi )
between brain regions Xi and X j , and ε1, . . . , εN are random
noise in nodes Xi (i = 1, . . . , N), which are mutually inde-
pendent. In detail, the main idea of SEM is to express every
ROI time series (Xi ) in a network by a linear combination
(y = f (x) + b) of all the time series (D), and the effective
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Fig. 1. The structure of EC-RGAN.

Fig. 2. An example of estimating effective connectivity by an effective connectivity generator. The input of the effective connectivity generator is the
fMRI time series of brain regions, and the output is the causal parameters and the generated fMRI time series.

connectivity between underlying neuronal activity (X j → Xi )
can be identified by analyzing the observed fMRI data (Xi and
X j ). To estimate the causal parameters of SEM, the common
strategy is using the maximum likelihood algorithm to fit
the model based on the covariance of observed variables.
However, SEM is a linear model that cannot fit well with
fMRI data by iteratively modifying the model parameters
(the strength of effective connectivity). To address this issue,
we employ RNN to capture the temporal information from
fMRI time series data to help the SEM model determinate
the model parameters. In this way, the FXi ,X j can more
realistic response to the effective connectivity between two
brain regions.

In detail, given data D and the noise variable ε, we can
estimate the time series of each brain regions:

X̂i =
∑

X j ∈�(Xi )

FX j ,Xi (X j ) + εi ,

=
N∑

j=1

A jiX j + εi , (3)

where A ji is the causal parameter of the effective connectivity
X j → Xi from brain region X j to Xi , thus A is a matrix of
the causal parameters (effective connectivity strength). In other
words, we can generate a time series of brain region Xi by

its parents (�(Xi )) time series and the strength of effective
connectivity between Xi and �(Xi ). In particular, FX j ,Xi = 0
means X j |� Xi and there is no directed arcs from X j to Xi

(i.e., X j � Xi ). Besides, there is no meaningful that one
brain region is generated by itself, thus we do not consider
the effective connectivity of a brain region itself, which means
that if i = j then FX j ,Xi = 0.

We use the following example to further illustrate the
structure of the effective connectivity generator: suppose we
have N brain regions and we want to estimate the effective
connectivity between X2 and other brain regions. Fig.2 illus-
trates the structure of the effective connectivity generator of
the brain region X2.

For the RNN model in Fig. 2, we employ the Long Short-
Term Memory (LSTM), which can relieve the problem of
vanishing and exploding gradients of the normal RNN. The
core of the LSTM architecture is the memory cell, which is
controlled by three different gates: input gate, forget gate,
and output gate. In detail, the input gate determines the
information to be updated, the forget gate decides whether
to retain or discard the previous state, and the output gate is
to control how much information the LSTM wants to output
at the current time step. Through the gates, the cell of LSTM
can store and update long-term memory. Given the T length
of fMRI time series {x1, x2, . . . , xt , . . . , xT }, the operation of

Authorized licensed use limited to: University of Southern California. Downloaded on January 06,2022 at 02:22:52 UTC from IEEE Xplore.  Restrictions apply. 



JI et al.: ESTIMATING EFFECTIVE CONNECTIVITY BY RECURRENT GAN 3329

gates and cell update at time t are as follows:

C̃t = tanh(Wc × (ht−1, xt ) + bc), (4)
it = σ(Wi × (ht−1, xt ) + bi ), (5)
ft = σ(W f × (ht−1, xt ) + b f ), (6)
ot = σ(Wo × (ht−1, xt ) + bo), (7)
ct = ft · ct−1 + it · C̃t , (8)
ht = ot · tanh(ct ), (9)

where it , ft , ot , ct denote the states of the corresponding gates
and cells at time t , xt represents the input at time t , ht−1 and
ht indicate the output at time t − 1 and t , respectively. C̃t is
a temporary sate, and σ is the sigmoid activation function. W
and b are the weight matrix and bias vector, respectively.

As shown in Fig. 2, the generator takes the original fMRI
time series (without X2) as input, and employs the RNN to
estimate the time series of X2. When the model is well-
trained, and the generated samples Xgen of X2 are very similar
to real data Xreal of X2. We can get the causal parameters
(FXi ,X2, i = 1, 3, . . . , N) from the effective connectivity gen-
erator. Finally, we can get the strength of effective connectivity
by the causal parameters.

In a word, we adopt a set of effective connectivity generators
as a generator to generate samples (the number of effective
connectivity generators is the same as the number of brain
regions). Each effective connectivity generator is employed to
generate the fMRI time series of one brain region based on
the causal parameters between one brain region and another
brain region. If the samples generated by the generator are very
similar to the real input data, then we can get the strength of
effective connectivity.

D. Regularization for Sparsity
To overcome overfitting and infer sparse effective connec-

tivity networks (causal graphs), we present a new loss function
by adding a sparsity penalty to the effective connectivity
generators. First, we define the sparsity penalty as:

L p = λ

2
log T �A� , (10)

where T is the length of time series, λ is the hyper-parameter
that controls the sparsity, and �A� denotes the network com-
plexity, that is, the sum of causal parameters A for the effective
connectivity network and is calculated as:

�A� =
N∑

i=1, j=1

Aij , (11)

where N is the number of nodes (brain regions). In particular,
if i = j , we do not consider the effective connectivity for one
brain region itself, and set Aij = 0.

E. Loss Function
Finally, we define EC-RGAN Loss Function as:

min
G

max
D

V (G, D)

= EX∼PD(X)[log D(X)]
+

N∑

i=1

EX̃i∼PD(X̃i ), ε∼P(ε)[log(1 − D(Gi (X̃i , ε)))]
+L p, (12)

Fig. 3. The detailed process of network binarization (the threshold is 0.1).

where n is the number of brain regions, and X̃i is the subset
of real fMRI time series set X without Xi (X̃i = X\Xi ).

As the number of effective connectivity generators is the
same as the number of brain regions, the hyper-parameters
of EC-RGAN are decided by the number of brain regions.
Therefore, when we employ EC-RGAN to estimate effective
connectivity in practice, we should generate the synthetic
fMRI data with the known ground-truth of the effective
connectivity network to select the hyper-parameters with the
best performance. When the hyper-parameters are determined
by the synaptic data, we can employ the EC-RGAN to estimate
the effective connectivity from fMRI time series data.

F. Network Binarization

The binary processing is necessary when we want to
compare the inferred effective connectivity networks with the
binarization ground-truth networks. It is worth noting that this
step is optional, which can be regarded as post-processing.
In detail, if the causal parameter Aij of an arc (Xi → X j )
is large than the threshold, then we set it to 1, otherwise, set
it to 0. The threshold is usually selected from the generated
data set with the ground-truth network, and then used in real
data set. To clearly illustrate the processing of the network
binarization, we give a detailed description in Fig. 3.

III. EXPERIMENTS

In this section, we first compare the proposed method with
our previous model EC-GAN to assess the performance of EC-
RGAN. And then, we compare EC-RGAN with other state-of-
the-art methods on simulated fMRI data generated from known
ground-truth networks. Finally, to illustrate the application
potential of EC-RGAN, we apply it to the real fMRI data.

A. Data Description

1) Benchmark Simulated Data: The benchmark simulated
data we used are supported by Sanchez-Romero et al. (2019)
[19], which are widely used for detecting methods’ perfor-
mance on estimating effective connectivity. In our experi-
ments, we run each method on a single subject to testing the
performance of different methods on small sample data.
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TABLE I
DESCRIPTION OF THE BENCHMARK SIMULATION DATA

Fig. 4. The ground-truth networks of the two simulated data sets.

TABLE II
THE ROIS OF THE REAL TASK FMRI DATA

The Sanchez simulated fMRI data contain different bidi-
rectional structures with different degrees of complex-
ity. In our experiments, We chose two simulations from
Sanchez data sets, which have one bidirectional arc and
two bidirectional arcs, respectively. The data is available
at https://github.com/cabal-cmu/feedback-discovery, and its
detailed description is shown in Table I. In detail, the ground-
truth networks of two simulations are shown in Fig. 4.

2) Real Task fMRI Data: We employ a set of real task fMRI
dataset [19] to test the performance of the EC-RGAN. The
real task fMRI data is acquired with a 3T scanner, TR =
2s, the number of data points is 160, and the number of
subjects is 9. The data is available at the OpenNeuro project
(https://openneuro.org/datasets/ds000003/versions/00001). In
the experiments, we employ eight brain regions and one input
variable as the ROIs. The detailed information of ROIs is
shown in Table II.

3) Real Alzheimer’s Disease Data: Real data used in this
article is obtained from the ADNI database (adni.loni.usc.edu).
In this study, we employ all the healthy controls (HC) and
AD patients available with fMRI data (53 HC subjects and
66 AD patients). The data is acquired using a 3T MRI scanner
(Siemens) and an 8-channel receive only head coil. fMRI
sequence parameters include: Slices = 48; volumes = 140;
TR/TE = 3000/30ms; FA = 90◦; Matrix = 64×64. For more
data information, please see www.adni-info.org.

fMRI data preprocessing is performed using the Data
Processing Assistant for Resting-State fMRI (DPARSF,
http://www.restfmri.net), which is based on Statistical

TABLE III
THE PARAMETER CONFIGURATIONS OF THE SIX METHODS

Parametric Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm)
and Resting-State fMRI Data Analysis Toolkit (REST).

B. Evaluation Metrics

We compared the learned result to ground-truth networks on
the three most common graph metrics: 1) Precision, 2) Recall,
and 3) F1-measure (F1). Let Ln express the learned network
and Gn denote the ground-truth network. The three evaluation
metrics are then given by:

Precision = S A

TLn

, (13)

Recall = S A

TGn

, (14)

F1 = 2 × Precision × Recall

Precision + Recall
, (15)

where S A represents the number of same directed arcs which
are both in Ln and Gn ; TLn and TGn respectively denote
the total number of directed arcs in Ln and Gn . In our
experiments, the bidirectional arc is equal to two arcs (e.g.,
Xi ↔ X j means Xi → X j and X j → Xi ).

C. Baseline Methods

To intuitively show the competitiveness of the EC-RGAN,
we compare EC-RGAN with the other seven methods, some of
them are classical methods, and some of them are state-of-the-
art methods. These methods include: GIMME [16], PC [20],
GES [20], AIAEC [19], MVARp [22], and PcLiNGAM [24],
respectively.

The parameters of the algorithms under comparison are
selected according to the existed literature [16]–[24]. For a
more fair comparison, we also randomly select 10 subjects
from the 60 subjects (as training data) to select the best
parameters for the seven comparison methods. The parameter
configurations of the corresponding methods are shown in
Table III.

D. Comparative Evaluations With EC-GAN
Before conducting the comparative experiments, we first

generated some simulated data with known ground-truth net-
work (as the training dataset) to optimize the hyper-parameters
of the EC-RGAN. The generation model of simulations is
referenced to the method in [8], which used the dynamic
causal modeling (DCM) to generate the fMRI time series data.
For a five nodes fMRI time series data, the hyper-parameters
of EC-GAN and EC-RGAN are set as: the learning rate of
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Fig. 5. The effect of the sparsity parameter λ. The black arrow indicates
that the direction of effective connectivity is consistent with the ground-
truth network, while the red arrow indicates that it is inconsistent.

TABLE IV
THE RESULTS OF EC-GAN AND EC-RGAN ON SIMULATED DATA

generator and discriminator are 0.01, the number of units m
is 100, the number of effective connectivity generators n is 5,
sparsity parameter λ is 5.

As the sparsity parameter is an important parameter, we give
an example to show how to tune it. We first run EC-RGAN
on the generated data and change the value of the sparsity
parameter λ. Then we compare the networks (estimated by
EC-RGAN with different λ) to the ground-truth network and
choose the sparsity parameter λ whose F-1 value is the highest.
Fig. 5 shows the effect of the sparsity parameter λ on five
nodes generated data.

Then we employ the benchmark simulated dataset as the test
dataset to evaluate the performance of EC-RGAN and other
methods. The results of EC-GAN and EC-RGAN on simulated
data are shown in Table IV. Compared to EC-GAN, we can
find that the new method EC-RGAN has an improvement in
Precision and F1.

To clearly show the performance and further analyze the
advantages of the new method, we also give the detailed results
of EC-GAN and EC-RGAN on each subject. The results of the
two methods on each subject through 60 subjects are shown in
Fig. 6 and Fig. 7. From Fig. 6 (A), we can find that EC-RGAN
performs better than EC-GAN on most of the subjects, one
reason is that EC-RGAN has fewer redundant arcs. In par-
ticular, EC-RGAN achieves 1 on subject 6, 18, 38, and 58,
while EC-GAN only achieves 1 on subject 18. Fig. 6 (B)
shows that EC-GAN and EC-RGAN have similar results in
recall. However, the worst performance of EC-RGAN is 0.67,
while EC-GAN gets 0.5 of recall on subject 2 and subject 53.
Fig. 6 (C) shows the F1 value of the two methods. As F1 is a
comprehensive evaluation of precision and recall, we can find
that EC-RGAN has a better performance on more subjects.

Fig. 7 shows the results on Sim2, and the results are similar
to that of Sim1. In detail, in Fig. 7 (A), the worst performance
in precision of EC-GAN is 0.5 (subject 24), and EC-RGAN
is 0.6. From Fig. 7 (B), we can find that EC-GAN get the

Fig. 6. The results of EC-GAN and EC-RGAN on Sim1. The horizontal
axis is the serial number of the subjects (1-60), and the vertical axis is
the value of the evaluation metrics (A) Precision, (B) Recall, and (C) F1.

worst performance on subject 38 with the recall of 0.43, but
the recall of EC-RGAN is higher 0.5. Fig. 7 (C) shows the
F1 value of EC-GAN and EC-RGAN on 60 subjects which
are higher than the results in Fig. 6 (C).

Next, we discuss what makes the new method EC-RGAN
more accurate than EC-GAN. We give two main reasons that
affect the performance of the corresponding two methods in
Fig. 8. The results show that even if we employ the same
hyper-parameter and threshold, the EC-RGAN has a better
ability to distinguish the directions among brain regions.

From Fig. 8, we can also find that EC-RGAN has fewer
bidirectional arcs and redundant arcs compare to EC-GAN.
As the EC-GAN and the EC-RGAN employ the same hyper-
parameters and the same structure of the neural networks,
the increase in precision may due to the use of temporal
information.

In a word, EC-RGAN performs better than EC-GAN in
precision and F1 value, and have a comparative result in
recall. Then we compare EC-RGAN with other state-of-the-art
methods in the following.
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Fig. 7. The results of EC-GAN and EC-RGAN on Sim2. The horizontal
axis is the serial number of the subjects (1-60), and the vertical axis is
the value of the evaluation metrics (A) Precision, (B) Recall, and (C) F1.

E. Comparisons on Benchmark Simulated fMRI Data

In the experiments, we run each method on each subject,
and show the results in Fig. 9 and Fig. 10. In detail, the labels
on the out ring show the serial number of the subjects, and
the labels in the middle of each graph show the value of each
metric. In our experiments, we use single subjects (500 data
points × 60 subjects), mainly because we want to test the
performance of different methods on a small sample size of
fMRI data. In particular, an algorithm performs well when it
gets higher values of precision, recall, and F1.

From Fig. 9 we can find that EC-RGAN performs the best
in recall and F1 value, while gets a mediocre performance
in precision. Specifically, AIAEC and GES have a good
performance in precision in Fig. 9 (A). One reason for these
methods performs well maybe that both AIAEC and GES are
score-based BN methods. They employ a penalty function in
their score functions, which can learn a sparse graph without
training a sparse parameter. In detail, the ground-truth network
of Sim1 is a causal graph with 5 nodes and 6 arcs, which
is a sparse graph. The number of arcs learned by GES and

Fig. 8. The two cases that EC-RGAN has a better performance than
EC-GAN on precision.

AIAEC is around 6 arcs, while the number of arcs learned
by EC-RGAN is around 8 arcs. So the precision of GES and
AIAEC is higher than that of EC-RGAN. From Fig. 9 (B),
we can find that EC-RGAN has an outstanding performance
in recall. In particular, it can get all true positive arcs on
more than 20 subjects. Fig. 9 (C) shows that EC-RGAN
gets the best performance on most of the subjects, which
demonstrates that the EC-RGAN has excellent learning perfor-
mance under the small sample and bidirectional structure fMRI
data.

Compared to the results in Fig. 9, BN methods have an
improvement in precision and performance degradation in
recall in Fig. 10. In contrast, MVARp and PcLiNGAM perform
worse in precision but have a better performance in recall.
The reason is that as the ground-truth network becomes dense
with more bidirectional connections (from Sim1 to Sim2), BN
methods cannot model the bidirectional connections, which
lead to the decrease of recall. From Fig.10 we can also find
that EC-RGAN performs the best in recall and F1, and has an
obvious increase in precision.

Besides, to show the results intuitively, we also give the
mean μ and the standard deviation σ results of 7 methods
through 60 subjects. The results on two simulated data sets
are shown in Table V. From Table V we can find that the
baseline methods perform worse in recall (lower than 0.6) and
F1 (lower than 0.65) on Sim1, however, our proposed method
EC-RGAN achieves the best performance in recall (0.87)
and F1 (0.76). Besides, AIAEC is better than EC-RGAN in
precision, but has a higher standard deviation. This indicates
that EC-RGAN has a more stable performance compared to
AIAEC. The results on Sim2 is similar to that of Sim1,
EC-RGAN still performs the best in recall and F1. It is
worth noting that EC-RGAN gets the highest value in pre-
cision which is equal to AIAEC, and has a smaller value
of standard deviation. These results show that EC-RGAN
can estimate more reliable effective connectivity than other
baseline methods.

In summary, the proposed model EC-RGAN performs better
than the six comparison methods on the simulation data. Next,
We discuss its performance on the real fMRI data in the
following section.
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Fig. 9. The results of seven methods on Sim1. The outer ring is the serial number of subjects, and the inner ring shows the value of the evaluation
metrics (A) Precision, (B) Recall, (C) F1.

Fig. 10. The results of seven methods on Sim2. The outer ring is the serial number of subjects, and the inner ring shows the value of the evaluation
metrics (A) Precision, (B) Recall, (C) F1.

TABLE V
THE MEAN AND THE STANDARD DEVIATION RESULTS OF 7 METHODS ON SMITH SIMULATED DATA

F. Results on Real Task fMRI Dataset
To test the performance of the algorithms with fMRI task

data, we use data previously published in [13], in which nine
subjects judged if a pair of visual stimuli rhymed or not. The
task data included an Input variable build by convolving the
rhyming task boxcar model with a canonical hemodynamic
response function. If the algorithms infer orientations cor-
rectly, then edges from the Input variable must feedforward
into the regions of interest, and no edge should point backward
into the Input variable. In this way, we can model the dynamics
of the task with an Input variable for which we expect
feedforward edges into the regions of interest and not vice
versa. This is a simple limited but gold standard test for the
accuracy of orientation algorithms.

In the experiments, we run EC-RGAN on the task fMRI data
of 9 subjects concatenated. The effective connectivity networks
estimated by EC-RGAN and other baseline methods are shown
in Fig. 11.

From Fig. 11 we can find that both EC-RGAN and EC-GAN
can infer the effective connectivity Input → L OCC and
Input → L ACC , which indicates that they can correctly
infer the feedforward connections from the Input variable
to the brain regions. GIMME and PC have the connections
i.e., Input − L OCC and Input − L ACC , but the directions
are opposite. AIAEC and PcLiNGAM only get one effec-
tive connectivity Input → L OCC , and MVARp gets two
bidirectional connections. From Fig. 11, we also find that
more than half of the methods get the effective connectivity
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Fig. 11. The effective connectivity estimated by EC-RGAN and the other six methods from the task fMRI data. The horizontal and vertical coordinates
indicate the corresponding regions of interest, the blue grid indicates effective connectivity between the two corresponding regions. The red dotted
line divides the entire network into nine regions, including the effective connectivity in the three parts (left brain, right brain, and input variable) and
the effective connectivity between each of the two corresponding parts.

i.e., L ACC → R ACC , L I FG → RI FG, L I P L → RI P L.
These results may indicate that the left hemisphere of brain
regions always activated earlier than the right hemisphere of
brain regions under this task (the information flow is from the
left brain to the right brain).

The results on real task data show that the new method
EC-RGAN can provide a new and reliable perspective for
the analysis of effective connectivity in task data. To further
compare the performance of EC-RGAN and EC-GAN on real-
world data, we carry out more experiments on the ADNI
dataset.

G. Results on the ADNI Database
In this section, we first run EC-RGAN on the ADNI data

(group analysis). In detail, there are two common ways to
estimate effective connectivity on the real-world data, one is
to estimate voxel-wise connectivity, and the other is to estimate
region-wise connectivity [30], [31]. In particular, EC-RGAN
can estimate the effective connectivity from fMRI data on both
voxel-level and region-level. However, EC-RGAN needs to
estimate all causal parameters and time series for each voxel
(node). Therefore, EC-RGAN has a lower time efficiency on
voxel-based estimation. In fact, region-based analysis is more
reasonable and common for effective connectivity analysis,
thus we employ region-based connectivity estimation on ADNI
data analysis.

The brain effective connectivity networks estimated by
EC-RGAN are graphically rendered in a circular diagram
format in Fig. 12, where the outermost rings represent the
brain regions and the center is a representation of brain effec-
tive connectivity. In this section, we employ the Automated

Anatomical Labeling (AAL) template as the parcellation map
to define the brain regions (90 ROIs). Each brain region is
represented by a circle with different colors (some may be the
same), and the color of arrows is the same as the parent nodes.

To analyze the differences between the two groups, we cal-
culated the number of effective connectivity in each group.
In detail, the number of EC in HC and AD groups is 259 and
204, respectively (with the same threshold of 0.1). In partic-
ular, there are significant decreases of EC in the Precuneus,
Temporal, Precentral, Cingulum, and Hippocampus, etc. These
findings once again verify previous studies implicating that
there are changes in these regions related to AD, which can
help explain and predict the progression and evolution of AD
disease [2], [3]. Aside from having different amounts of brain
effective connectivity at the global scale, AD groups also have
a different pattern of connectivity across the brain compared
with HC subjects. In particular, we can also find that the
directions of the effective connectivity are different in AD
patients compared to HC subjects. For instance, the directions
of effective connectivity in HC subjects are from other regions
to Frontal-Sup-Orv-L, but they have opposite directions (from
Frontal-Sup-Orv-L to other regions) in AD patients. This may
indicate that the neural influence and information flow may be
different between HC groups and AD groups. In the current
study, lots of work have found that the reduction of effective
connectivity or functional connectivity is closely related to
brain disease, while the situation of reverse connection is
rarely reported. Therefore, causal learning is an important
and relevant aspect of fMRI research, and the proposed
EC-RGAN can provide a new perspective and application for
the analysis of AD disease. Besides, we also find that AD
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Fig. 12. The effective connectivity estimated by EC-RGAN from ADNI data of HC and AD groups.

groups have more EC in the SupraMarginal-R than HC groups.
This phenomenon may be related to compensatory processes
for AD patients, however, the implicative mechanism behind
the phenomenon remains unclear, and it needs to be further
discussed and studied.

As the effective connectivity networks on the ADNI dataset
have no ground-truth networks, we also add a classifica-
tion experiment to further compare the EC-RGAN and the
other state-of-the-art methods. In the classification experi-
ment, we can employ the label (AD or HC) as the ground-
truth [25], [32]. If the brain network effective connectivity
network estimated by a method can be successfully classified,
then we think that this method performs well on effective
connectivity estimation. In detail, we compare our proposed
method EC-RGAN with several other effective connectivity
estimation methods (EC-GAN, PcLiNGAM, MVARp, and PC)
for AD classification on the ADNI dataset, and all methods
employ the same classifier (random forest with 1000 decision
trees). We divide the data set into 10 parts, nine of them
were taken as training data in turn, and one was used as test
data for testing. Then all methods run on the same training
data and test data. In particular, the classification accuracy of
GES and AIAEC is terrible, which lacks practical or clinical
significance, so the results are not reported. The classification
results of 10 runs are shown in Fig. 13.

From Fig. 13, we can find that the proposed method
EC-RGAN outperforms the competing state-of-the-art meth-
ods. The classification accuracy (mean value) by EC-RGAN
scheme of 0.72, which is the highest among the competing
methods. Besides, the t-test results show that EC-RAGAN has
a significant difference with the other four methods (p-value
< 0.05), which indicates that the proposed method has an
excellent ability to identify AD patients from normal controls.

Fig. 13. The comparison of classification performance. The height of the
column is the mean value of accuracy, and the error bar is the variance.
The line above the histogram indicates that there is a statistical difference
between the two algorithms (p-value < 0.05).

TABLE VI
COMPARISON OF THE CLASSIFICATION PERFORMANCE

To analyze the classification performance more compre-
hensively, we also employ the precision, recall, F1 value,
and balanced accuracy (BAcc) to evaluate the performance
of different methods. Table VI shows the mean value and the
standard deviation of the 10 runs for each method.

From Table VI we can find that EC-RGAN achieves the
best performance on recall and BAcc. In particular, the BAcc
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of EC-RGAN is significantly higher than all other methods.
In a word, the comparison of classification further verified that
EC-RGAN performs well on real-world data.

IV. CONCLUSION

In this paper, we proposed a new model to estimate brain
effective connectivity network from fMRI time series data
based on recurrent generative adversarial networks, called
EC-RGAN. The proposed framework infers effective con-
nectivity via a generator and a discriminator. In detail, the
generator is composed of several effective connectivity gen-
erators that can generate the fMRI time series of each brain
region based on effective connectivity, and the discriminator
is employed to distinguish between the joint distributions of
real and generated fMRI time series. Experimental results on
both simulated and real-world data demonstrate the efficacy
of our proposed framework.
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